
68 The Delphi Magazine Issue 56

COM Corner:
COM+ Security
by Steve Teixeira

As the introduction of one new
technology quickly follows

another in today’s insanely paced
world of software development, I
occasionally reflect fondly on the
old days of PC software develop-
ment, when applications consisted
of a .EXE or a .COM file and a net-
work was a place to share data files
with your co-workers. Business
applications today often consist of
multiple types of user interfaces
(Windows, web-based, Java, etc)
communicating with software
components distributed across a
network, which in turn
communicate with one or more
database servers on the network.

As our ability to successfully tame
multiple components into an appli-
cation increasingly becomes a
barometer for our success as
developers, so does our ability to
enable these components to com-
municate in a trusted environment.
This means building security into
distributed applications which
enables components to know who
is using them and what level of
service they should offer.

The notion of security has
become common sense at this
point. We all understand that most
data needs to be protected. For
example, human resources data
shouldn’t be accessible to all, sales
data shouldn’t be accessible to
your competitors, etc. Equally,

component function-
ality also needs to be
secure: perhaps only
administrators should
have the right to use
certain objects, or
only department man-
agers should have
access to a particular
business rules engine.
In practice, however,
building this type of

security into distributed applica-
tions can be a time-consuming
process, and security features
naturally take a back seat to core
functionality in project schedules.

COM+ provides a well con-
structed set of security features
which address many of these
issues. COM+ makes security more
of an administrative issue than a
programming one, and therefore
helps you to spend more time
developing application logic and
less time writing security code.
Configuring COM+ application
security in the Component Ser-
vices administration tool is a
one-time task, and your applica-
tion can thereafter remain free of
security-specific code. At the same
time, COM+ does provide APIs for
accessing security information for
those cases where you do need to
go beyond the provided function-
ality. This article will provide an
overview of security architecture
for COM+ server applications and
will show you how to use security
in your COM+ applications.

Role-Based Security
COM+’s security architecture is
often referred to as role-based.
Rather than managing accounts
for individual users, COM+ appli-
cations rely on categories or
groups of users, referred to as
roles. Roles work hand-in-hand
with the operating system-based
security, as the members of roles
are the user accounts on the Win-
dows 2000 server or domain. Roles
can be created on an application-
by-application basis using the
Component Services administra-
tion tool, and the process is rather
straightforward. Right click on the
Roles node of the COM+ applica-
tion in the tree on the left in the
Component Services administra-
tion tool. Once a role has been
added, another right click can add
users to the role. Figure 1 illus-
trates the process of adding users
to a role.

You can see from Figure 1 that,
in this example, the COM+ applica-
tion has three roles, called Junior,
Normal, and Hero. These are simply
names I made up to indicate three
different groups of users I plan to

➤ Figure 1

Authentication Level Description

None No authentication occurs.

Connect Authenticates credentials only when the
connection is made.

Call Authenticates credentials at the beginning of
every call.

Packet Authenticates credentials and verifies that all call
data is received. This is the default setting for
COM+ server applications.

Packet Integrity Authenticates credentials and verifies that no call
data has been modified in transit.

Packet Privacy Authenticates credentials and encrypts the packet,
including the data and the sender’s identity and
signature.

➤ Table 1



April 2000 The Delphi Magazine 69

provide differing functionality for
in my COM+ application. Notewor-
thy is the fact that the actual
authentication is handled automat-
ically by the OS, and COM+ builds
on top of those services.

Role-Based
Security Configuration
Arguably the slickest aspect of
COM+’s role-based security
system is the fact that security can
be established at the application,
component, interface or even
method level! This means that you
can control which roles have
access to which methods without
writing a line of code.

The first step to configuring
COM+ application security is to
enable security at the application
level. This is done by editing the
properties of the application in the
Component Services administra-
tion tool and then switching to the
Security tab, shown in Figure 2.

Application security is enabled
when the Enforce Access Checks
for this Application checkbox is
checked. This dialog also enables
selection of the security level,
which can be set to perform
security checking at the process
level only, or at the process and
component level.

Enabling security only at the pro-
cess level has the effect of locking
the front door to the COM+ applica-
tion, where all members of roles
assigned to the application have
the key to that door. When this
option is selected, no security
checking will be performed on the
component, interface, or method
level, and security context infor-
mation will not be maintained for
objects running in the application.

This type of
security is
useful when
you do not
need granular
security con-
trol, but
simply wish to
limit overall
access to the
COM+ appli-

cation to a specific group of users.
This type of security also has the
advantage in increased perfor-
mance, since security checks do
not need to be made by COM+
during execution of the
application.

Enabling security at the process
and component level ensures
role-based security checks will be
made at the component, interface
and method levels, and security
context information will be avail-
able to objects in the application.
While this provides maximum con-
trol and flexibility, note that the
performance of your COM+ appli-
cation will suffer slightly, due to
the increased level of management
that COM+ will need to perform
during execution.

The dialog shown in Figure 2 also
provides for configuration of the
authentication level of the COM+

application. The authentication
level determines the degree to
which authentication is performed
on client calls into the application.
Each successive authentication
level option provides for a greater
level of security: the options are
shown in Table 1.

Note that authentication
requires the participation of the
client as well as the server. COM+
will examine the client and the
server preference for authentica-
tion and will use the maximum of
the two. The client authentication
preference can be set using any
one of the following techniques.
➢ The machine-wide setting spec-

ified in the Component Services
administration tool (or
DCOMCNFG on non-Windows
2000 machines).

➢ The application level setting
specified in the Component
Services administration tool
(or DCOMCNFG on non-
Windows 2000 machines).

➢ The process level setting speci-
fied programmatically using
the CoInitializeSecurity COM
API call.

➢ An on-the-fly setting that can be
specified programmatically us-
ing the CoSetProxyBlanket API.

Finally, the dialog shown in Figure
2 allows configuration of the

➤ Figure 2

Impersonation Level Description

Anonymous The client is anonymous to the server.

Identify The server can obtain the client’s identity, and can
impersonate the client only to perform Access
Control checking.

Impersonate The server can impersonate the client while acting
on its behalf, though with restrictions. The server
can access resources on the same computer as the
client. If the server is on the same computer as the
client, it can access network resources as the
client. If the server is on a computer different
from the client, it can only access resources that
are on the same computer as the server. This is the
default setting for COM+ server applications.

Delegate The server can impersonate the client while acting
on its behalf, whether or not on the same
computer as the client. During impersonation, the
client’s credentials can be passed to any number
of machines. This is the broadest permission that
can be granted.

➤ Table 2



70 The Delphi Magazine Issue 56

application impersonation level.
The impersonation level setting
dictates to what degree the server
application may impersonate its
client in order to access other
resources on behalf of clients.
Table 2 explains the options for
impersonation level.

Like authentication, imperson-
ation can only be accomplished
with the consent of the client. The
client’s consent and preferences
can be established exactly as
authentication, using Component
Services administration tool,
DCOMCNFG, or the CoInitialize-
Security and CoSetProxyBlanket
API calls.

Once application security has
been configured, security can then
be configured for components,
interfaces and methods of the
application. This is done in a
similar manner by editing the
properties of the item in the tree
and choosing the security tab. This
will invoke a dialog with a page
similar to that shown in Figure 3.

The dialog shown in Figure 3 is
fairly straightforward; it enables
you to specify whether security
checks should be enabled for the
item and which roles are to be
allowed access to the item.

Multi-Tier Performance
When designing multi-tier applica-
tions that employ COM+ security,
there are a number of performance
considerations you should weigh.
First and foremost, always bear in
mind that one of the primary goals
of a multi-tier system is to improve
overall system scalability. One
mistake that often compromises
scalability and performance is to
over-secure an application by
implementing security at multiple
tiers. A better solution would be to
leverage COM+ services by imple-
menting security only or mostly at
the middle tier. For example,

rather than imper-
sonating the client
in order to gain
access to a data-
base, it is more effi-
cient to access the
database using a
common connec-
tion that can be
pooled among
multiple clients.

Programmatic Security
Up to now, I’ve focused primarily
on declarative (or administration-
driven) security, however I did
mention that it is also possible to
program security into COM+ appli-
cations. The most common thing
you might want to do is determine
whether the caller of a particular
method belongs to a specific role.
This enables you to control not just
method access, but method behav-
ior too, based on the role of the
client. COM+ provides not one but
two means for making this
determination. There is a method
of IObjectContext called IsCaller-
InRole, which is defined as:

function IsCallerInRole(
const bstrRole: WideString):
Bool; safecall;

This function is used by passing
the name of the role in the bstrRole
parameter; it returns a Boolean
value indicating whether the cur-
rent caller belongs to the specified
role. A reference to the current
object context can be found by call-
ing the GetObjectContext API,
which is defined as:

function GetObjectContext:
IObjectContext;

The code in Listing 1 checks to see
if the caller is in the Hero role prior
to performing a task.

Similarly, an IsCallerInRole
method is also found on the
ISecurityCallContext interface, a
reference to which can be
obtained using the CoGetCall-
Context API. This version of the
method is actually preferred,
simply because ISecurityCall-
Context makes handy a lot of other
security information, such as the
caller plus its authentication and
impersonation level.

Summary
My hope is that by now you have a
feel for how COM+ security works
and how you can employ it in your
own COM+ applications. COM+
makes integrating very powerful
security into your applications a
matter of a few mouse clicks in the
administration tool (or a few lines
of code using the admin API), but it
doesn’t sacrifice power for all its
ease of use. The point is to get
application developers out of the
security programming business
and into thinking about the core
goals of their applications.

Steve Teixeira is CTO of DeVries
Data Systems, a Silicon Valley
interactive architect, and co-
author of Delphi 5 Developer’s
Guide. You can reach him at
steve@dvdata.com

➤ Figure3

var
Ctx: IObjectContext;

begin
Ctx := GetObjectContext;
if (Ctx <> nil) and (Ctx.IsCallerInRole('Hero')) then begin
// do something interesting

end;
end;

➤ Listing 1


	Role-Based Security
	Role-Based Security Configuration
	Multi-Tier Performance
	Programmatic Security
	Summary

